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A B S T R A C T   

As energy prices rise, optimizing renewable power plant sizing is vital, especially in areas with unreliable 
electricity supply due to distant transmission lines. This study addresses this issue by optimizing a renewable 
power plant portfolio for a Spanish municipality facing such challenges. The presented approach involves a 
systematic method. Firstly, energy demand is thoroughly analyzed. Next, available renewable resources are 
explored and optimal plant placements are determined. A multi-objective particle swarm optimization algorithm 
is then used to size each plant, minimizing annualized costs and grid energy imports. The most suitable feasible 
optimum is selected from theoretical configurations using branch and bound techniques, prioritizing practicality. 
In the specific case analyzed, the results show a 20-year Internal Rate of Return of 8.33 %. This is achieved with 
the following capacities for each plant: 750 kW of photovoltaic solar energy, 160 kW of turbine-based genera
tion, 180 kW of hydroelectric pumping, 160 kW for the biomass plant, and 200 kW from the wind turbine. This 
study offers an innovative solution to energy challenges, providing practical insights for cost-efficient, sustain
able projects.   

1. Introduction 

Electricity prices have been steadily increasing due to various fac
tors. The primary driver of this increase has been the growing demand 
for electrical energy, exacerbated by the limited capacity of the system 
[1]. Additionally, the depletion of fossil resources has contributed to a 
rise in energy prices, a trend that has intensified since the second half of 
2021 [2]. To effectively address these challenges, it is imperative to 
adopt a multifaceted approach, both on the demand and electricity 
generation sides. 

On the demand side, cost reduction and mitigation of energy prices 
can be achieved by aligning consumption with system conditions, both 
at small [3] and large scales [4]. As a result, substantial efforts have been 
invested in research to improve demand response mechanisms [5] and 
encourage active consumer participation in the electricity market op
erations [6]. 

On the generation side, attention is also required. Increased utiliza
tion of renewable energy sources has reduced dependence on fossil fuels 
[7], leading to a decrease in energy costs [8]. In this context, microgrids 
(MGs) have emerged as a viable solution to integrate these renewable 

sources [9]. MGs facilitate distributed and centralized utilization of 
renewable energy facilities [10]] as they are allowed to operate inde
pendently [11]. This enables small-scale distributed generation facilities 
to enhance system reliability [12] and reduce dependence on traditional 
centralized facilities [13]. Typically, these MGs remain interconnected 
with the main grid [14], optimizing overall system performance through 
the management of their micro power plants [15]. However, they can 
operate autonomously, further enhancing reliability in case of supply 
interruptions [16]. For this purpose, an energy storage system is 
required in most cases [17]. Nevertheless, to fully realize the advantages 
offered by MGs to the electrical system and its participants [18], effi
cient design is essential, requiring the establishment of reliable and 
appropriate methodologies [19]. 

The first step in designing an MGs power supply system involves 
analyzing consumer demand patterns. Subsequently, an examination of 
available natural resources is necessary to propose an optimal mix of 
generation (and storage). Finally, the design of components, including 
their locations and sizes, must be optimized [20]. While determining 
locations is often straightforward due to physical constraints, sizing el
ements can be more complex. In general, the objective is to select a 
combination of resources that minimizes installation costs, taking into 
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account economic investments [21]. However, specific constraints may 
vary from one case to another [22]. Furthermore, optimizing the design 
of an MG involves considering multiple objectives [23]. For instance, 
consumers in certain geographical areas may experience reliability is
sues due to challenging terrain and adverse weather conditions, such as 
wind and snow, resulting in long distribution lines [24]. In such cases, 
installing various renewable energy plants to meet electricity demand 
can significantly improve the situation [25]. Consequently, reducing 
dependence on the general electrical grid becomes a key goal in 
designing these MGs [26]. These projects involve substantial in
vestments that need to be minimized [27] and must comply with all 
physical and legal constraints associated with various facilities [28]. 

Therefore, addressing such issues requires the use of multi-objective 
optimization techniques with constraints [29]. To tackle such cases, 
numerous multi-criteria optimization techniques have been used in the 

literature [30]. These techniques have been primarily employed to 
enhance system resilience [31], reliability [32] and stability [33]. In 
addition, other studies have utilized these techniques to establish new 
solutions in economic dispatch [34]. Furthermore, they have also been 
applied to optimize network management [35]. On the other hand, plant 
size optimization during the planning phase with multi-criteria opti
mization techniques has been analyzed. In the latter case, there are 
studies aiming to minimize both installation costs at the initial invest
ment level [36] and operation costs over its lifetime [37]. However, 
there is a gap in the current literature regarding the joint consideration 
of planning and management phases, particularly in rural areas [38]. 
Additionally, most existing studies do not emphasize the importance of 
energy supply reliability enough, especially in rural areas. While some 
studies have addressed reliability [39], it has not been a focal point in 
the optimization process [40]. Furthermore, the utilization of available 

Nomenclature 

BAB Branch and bound 
MG Microgrid 
PSO Particle swarm optimization 
PV Photovoltaic 

Parameters, variables, and functions 
CEy Yearly costs of energy supplied by the grid (€/year) 
CIi Installation costs of resource i (€) 
CIy Yearly installation costs (investments) of the generation 

facilities (€/year) 
CMy Yearly maintenance costs of the generation facilities 

(€/year) 
CMi Yearly maintenance costs of resource i (€/year) 
COi Yearly operating costs of resource i (€/year) 
COy Yearly operating costs of the generation facilities (€/year) 
Cy Yearly costs of generation facilities (€/year) 
ci Function to represent the installation costs of resource i 

given its installed power (€) 
c1 Acceleration coefficient to update a particle’s velocity (self 

adjustment weight) 
c2 Acceleration coefficient to update a particle’s velocity 

(social adjustment weight) 
EHmax Maximum energy that can be stored in the hydroelectric 

power plant (kWh) 
EHmin Minimum energy that can be stored in the hydroelectric 

power plant (kWh) 
EHo Initial energy stored in the hydroelectric power plant 

(kWh) 
f Objective function 
fn Normalised value of the objective function 
f1 First objective function (yearly costs of generation 

facilities) 
f2 Second objective function (energy supplied by the grid) 
f1max Maximum value of the first objective function used to 

normalise them 
f2max Maximum value of the second objective function used to 

normalise them 
f1n Normalised value of the first objective function 
f2n Normalised value of the second objective function 
g(s) Global best position in the swarm as of iteration s 
mfi Fixed maintenance costs of resource i (€) 
mvi Variable maintenance costs of resource i (€/h) 
ny Project lifetime (years) 
ofi Fixed operating costs of resource i (€) 
ovi Variable operating costs of resource i (€/h) 

Pi Installed power of resource i (decision variables) (kW) 
PFi Set of feasible values of decision variable i (decision 

variable feasible range) (kW) 
Pimax Maximum value of installed power of resource i (decision 

variable bounds) (kW) 
Pimin Minimum value of installed power of resource i (decision 

variable bounds) (kW) 
pd(t) Demanded power at time t (W) 
pg(t) Power supplied by the grid at time t (W) 
p′

H(t) Power extracted from the storage system in the 
hydroelectric power plant at time t (W) 

pP(t) Power demanded by pumps at time t (W) (kW) 
p̂BM(tp) Average power supplied by the biomass power plant 

during the time interval tp (kW) 
p̂d(tp) Average demanded power during the time interval tp (kW) 
p̂H(tp) Average power supplied by the hydroelectric power plant 

during the time interval tp (kW) 
p̂g(tp) Average power supplied by the grid during the time 

interval tp (kW) 
p̂i(tp) Average power supplied by resource i during the time 

interval tp (kW) 
RS Set of resources considered in the project. In this study, the 

resources considered are PV (photovoltaic), P (hydraulic 
pumps), T (hydraulic turbines), BM (biomass) and W 
(wind) generators 

r Interest rate (%) 
r1, r2 Random values to randomise a new particle’s velocity 

calculation 
ti Total time of use of resource i during the project lifetime 

(h) 
v(s)k Velocity of particle k at iteration s 
x(s)k Position of particle k at iteration s 
x̂(s)

k Best position of particle k as of iteration s 
α Inertial coefficient to update a particle’s velocity 
γ Annual demand growth (%) 
εj Weight of the first objective function for each optimization 

problem to search a Pareto front solution (non-dominated 
solution) 

ηP Efficiency of hydraulic pumps (%) 
ηT Efficiency of hydraulic turbines (%) 
μi(n) Binary function that equals 1 if resource i has maintenance 

costs at year n 
ωi(n) Binary function that equals 1 if resource i has operating 

costs at year n  
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natural resources (such as waste biogas or river water energy) and 
specific geographical advantages of case studies are not adequately 
explored. The focus has primarily been on meeting the needs of the 
environment [41] rather than harnessing its strengths. 

Therefore, this paper presents the optimal design of generation 
infrastructure for a real MG in a rural area of Spain using a method based 
on multi-objective particle swarm optimization (PSO) [42] combined 
with the search for a feasible optimum using the branch and bound 
(BAB) technique [43]. Two objective functions have been selected to 
address the unique needs of rural areas, focusing on improving reli
ability and minimizing the costs of the designed facilities. The PSO al
gorithm has been chosen for its simplicity [44] and computational 
efficiency [45], as it produces high-quality solutions quickly and ex
hibits stable convergence [46]. Moreover, it has a proven track record in 
solving electricity systems optimization, as shown in Ref. [47], even 
with multiple scenarios [48]. Finally, the incorporation of legal con
straints on plant sizes and the use of discrete variables instead of 
continuous ones further increase the complexity of the problem, high
lighting a clear research gap in the existing literature. 

The methodology developed in this work provides a comprehensive 
overview of its general application in optimizing the design of MG 
generation plants while addressing the minimization of annualized 
installation costs and imported energy from the grid. The methodology 
generates a set of Pareto frontier points, representing scenarios that 
minimize both objective functions while considering their interrelation. 
The methodology is exemplified through a case study involving the 
design of an actual MG in a Spanish municipality. The application of the 
methodology is described, the selection of the optimal solution is dis
cussed, and a detailed description of the final designed facilities is 
provided, including the technical feasibility analysis of the MG. It is 
noteworthy that this case study represents a significant innovation, as it 
considers the minimization of energy imported from the grid and allows 
for the development of an MG with substantial improvements in the 
reliability of electric energy supply. The inclusion of this objective en
ables the assessment of the MGs potential to operate in an isolated mode 
or be designed for such operation [49]. This case study is also pioneering 
in Spain, potentially making the municipality the first in the country to 
disconnect from the general electricity grid. By employing the proposed 
method, optimal solutions are obtained that minimize or even eliminate 
exchanges with the grid, offering a range of scenarios that are highly 
valuable for installations with low power quality due to a weak 
connection to the system. 

The main contributions of this work are listed below:  

- The described method provides a set of viable optimal solutions 
applicable to both continuous and discrete variables. To determine 
the optimal solution, BAB is applied to the best solutions from the 
Pareto frontier, ensuring optimality and convergence speed during 
the PSO algorithm.  

- The proposed method enables the optimal design of MG generating 
facilities, aiming to minimize costs and exchanges with the grid. This 
approach facilitates the feasibility assessment of creating an MG 
capable of operating in isolation (islanded operation). By doing so, it 
enhances the MG’s reliability, decoupling it from grid failures. 

Moreover, the method considers not only the initial investment but 
also the total annualized cost.  

- The presented case study is the first of its kind in Spain, involving the 
development of a real project for MG infrastructure. The case study is 
presently undergoing construction, during which a detailed 
description of the optimization methodology, data analysis, and the 
final design of the microgrid is provided. 

The article follows the subsequent structure. Section 2 furnishes an 
extensive account of the proposed methodology. Section 3 employs the 
methodology in a real case study, scrutinizes the outcomes, and de
liberates on the choice of the optimal solution. In Section 4, the chosen 
optimal solution’s technical implementation is delineated, encompass
ing considerations of both physical and legal impediments. A compre
hensive examination of various installations and a technical feasibility 
analysis of the microgrid complex are expounded upon. Lastly, Section 5 
presents conclusions derived from the work presented. 

2. Materials and methods 

This section describes the proposed method for the optimal design of 
the generation infrastructure of a MG. In general, the method corre
sponds to the one shown in Fig. 1, in order to be applied to any location. 
As this section will show, the proposal involves a systematic and inte
grated method for sizing renewable power plants. This includes demand 
analysis, resource assessment, optimal placement, and the application of 
a multi-objective particle swarm optimization algorithm, combined with 
a discussed selection of the optimal feasible solution to be implemented. 

Therefore, the first thing is to analyse the electrical demand needs to 
be covered with the installations to be designed [50]. For this, records of 
hourly electricity consumption of at least one year are required. In 
addition, it is convenient to know maximum instantaneous power values 
to take them into account in the final detailed design. The probability 
distribution of the hourly energy demand must be obtained. Likewise, 
the generation potential of the different available resources must be 
studied in order to evaluate their feasibility and estimate their perfor
mance and probability distribution. 

The next step would be to select the available sources that can meet 
the hourly demand. For this, the previous analysis is used, discarding the 
sources that are not profitable. Examples of typical resources can be 
photovoltaic (PV) solar power plants, wind power plants, storage sys
tems such as batteries or hydroelectric plants or biomass or biogas 
plants. For the selected sources, the optimal location must be decided, 
considering the availability of resources and their performance. 

Next, the actual resource available from the selected sources must be 
studied. At a minimum, an estimate of the specific generation of each 
source (typical generation per installed kW) must be calculated. Addi
tionally, the limits of the facilities that require storage or use of raw 
material must be calculated (maximum size of the deposits for hydro
electric plants or the amount of biomass that can be collected and stored 
per day). 

After having these basic data, a multi-criteria optimization algorithm 
must be implemented to design the optimal sizes of each power plant (in 
kW), minimizing the total annualized cost and the energy imported from 
the general network. To this end, the use of an algorithm based on multi- 

Fig. 1. Flowchart for optimal design of the generation infrastructure of a microgrid.  
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objective particle swarm optimization is proposed together with a final 
search for the feasible optimum by BAB. In addition, once the Pareto 
frontier is obtained, the selection of the optimal scenario must be dis
cussed considering all the legal and physical restrictions. In this analysis, 
criteria such as minimization of costs, environmental impact or balanced 
use of available natural resources must be considered, among others. 

The multi-criteria optimization method used in this study is 
described below. First, the mathematical approach to the optimization 
problem is shown. To do this, both the decision variables and the 
objective functions are defined. Then the algorithms to obtain set of 
optimal solutions of the Pareto frontier are explained. The results of the 
optimization in the developed case study are shown in later sections. 

2.1. Objective functions 

The main objective function to be minimized is the total annualized 
cost of electricity supply to meet demand. Equation [1] corresponds to 
the first objective function: 

f1 =Cy (1) 

On the other hand, it is desired to minimize the exchange of energy 
with the network due to the low reliability that has historically been 
seen with the traditional configuration. This is done with the intention of 
approaching a hypothetical future situation of system disconnection. 
Thus, the second objective function is the one shown in equation [2]: 

f2 =

∫8760

0

pg(t)dt (2)  

where pg(t) is the power imported from the network at each moment of 
the study year. Therefore, the general statement of the objective of this 
problem would correspond to equation [3]: 

min f =min (f1, f2) (3) 

The annualized cost has four components, as shown in equation [4]: 

Cy =CIy + COy + CMy + CEy (4)  

where CIy is the cost of the investments required to install the infra
structure of the electricity supply systems, COy and CMy are the annual
ized operation and maintenance costs of the set of systems for electricity 
supply, respectively and CEy is the total cost of energy imported from the 
grid. 

For each disbursement occurring in different years, and under the 
assumption of a given interest rate r it is possible to calculate the 
annualized costs associated with these disbursements throughout the 
study’s ny year horizon, using the equations [5–7]: 

CIy =

∑
CIi

ny
,∀i ∈ RS (5)  

COy =

∑ny − 1

j=0

COi(
1+ r

100

)j

ny
,∀i ∈ RS (6)  

CMy =

∑ny − 1

j=0

CMi(
1+ r

100

)j

ny
, ∀i ∈ RS (7)  

In these expressions, RS is the set of resources, for example, PV, hy
dropower (pumps and turbines), biomass and wind. 

2.1.1. Cost determination 
To calculate the investment costs, it is necessary to know the sizes of 

each installation. Depending on them, the cost CI of each resource will 

be obtained as shown in equation [8]: 

CIi = ci(Pi), ∀i ∈ RS (8) 

The sizes of the facilities Pi are the variables to be determined to 
minimize the objective function, called decision variables. Once these 
sizes have been set, the operation and maintenance costs are obtained by 
carrying out the load flow of each situation for a full year and analyzing 
the use of the facilities. Estimating a certain cost for each amount of kWh 
generated from each resource and updating the demand for each year 
with an estimated percentage increase of γ and the same probability 
distribution as the one studied, the operation and maintenance cost of 
each resource can be obtained in every year n using equations [9,10]: 

COi (n)= ovi ⋅ ti

(
pd(t) ⋅

(
1 +

γ
100

)n
,P1,…,Pk

)
+ ofi ⋅ ωi(n), ∀i ∈ RS (9)  

CMi (n)=mvi ⋅ ti

(
pd(t) ⋅

(
1 +

γ
100

)n
,P1,…,Pk

)
+mfi ⋅ μi(n), ∀i ∈ RS (10)  

where ovi and ofi are the annual variable and fixed operation costs of 
resource i, respectively. ti is the time of use of that resource for year n, 
which depends on the demand for that year (updated with the assumed 
increase γ). mvi and mfi are the annual variable and fixed costs, respec
tively, of maintenance of resource i and the fixed costs of operation and 
maintenance take place, respectively, in those years in which the func
tions ωi(n) and μi(n) are not zero. 

As can be seen, the time each resource is used depends on the sizes of 
all the resources, as indicated by the equations. Therefore, in each 
iteration it will be necessary to use an algorithm (such as DEROP [51] to 
obtain the use of each resource at each moment during the simulation 
period. Thus, this objective function is a noisy function, that is, it has no 
explicit expression. 

2.1.2. Energy provided by the network determination 
Similarly, to obtain the value of the second objective function for an 

interval of one year, for example, it is necessary to complete the optimal 
load flow for the entire evaluation period. In this way, the energy pro
vided by the grid can be obtained using equation [11], instead of using 
equation [2]. 

f2 =

∫8760

0

(

pd(t)+ pP(t) −
∑

i
pi(t)

)

dt, ∀i ∈ RS\{P} (11)  

where pd(t) is the power demanded at each moment of the year, pP(t) is 
the power demanded by the pumps of the hydroelectric plant and pi(t) is 
the power provided by each one of the resources of the contemplated set 
(of which pumps have been excluded, as they are considered an addi
tional load). 

When computing the value of this function for a certain value of the 
decision variables Pi, an algorithm is proposed whose rules are set out 
below.  

a) For each iteration, the demand curve is generated following the 
studied distributions and considering the proposed annual growth γ.  

b) The generation curve of resources such as PV and wind power are 
also generated using the value of their variables Pi and the corre
sponding distributions. The generation is limited to a value such that 
exports do not take place, so that for each time interval tp its value 
must comply with the restriction [12]. 
∑

i∈{PV,W}

p̂i
(
tp
)
≤ p̂d

(
tp
)

(12)   

c) Resources such as biomass are used as base production. The pro
duction curve of a resource such as biomass is the maximum value 
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that it can generate without exporting energy to the grid, for all 
hours of each day except the hours of greatest renewable production. 
In other words, the generation of a biomass power plant during these 
hours depends on the demand and the generation of systems such as 
PV or wind power and corresponds to equation [13]: 

p̂BM
(
tp
)
=

⎧
⎪⎨

⎪⎩

min

(

pd
(
tp
)
−

∑

i∈{PV,W}

pi
(
tp
)
,PBM

)

, pd
(
tp
)
>

∑

i∈{PV,W}

pi
(
tp
)

0, pd
(
tp
)
=

∑

i∈{PV,W}

pi
(
tp
)

(13)   

d) The power curve provided by a storage system, such as a hydro
electric plant, is such that as much as possible is pumped or turbined 
each hour. Therefore, equation [14] is used, taking the power sup
plied by this system as a positive value: 

p̂H
(
tp
)
=

⎧
⎪⎪⎨

⎪⎪⎩

min

(

p̂d
(
tp
)
−

∑

i∈{PV,W,BM}

p̂i
(
tp
)
,

ηT

100
⋅PT

)

, pd
(
tp
)
≥

∑

i∈{PV,W,BM}

pi
(
tp
)

− min

(
∑

i∈{PV,W,BM}

p̂i
(
tp
)
− p̂d

(
tp
)
,

ηP

100
⋅PP

)

, pd
(
tp
)
<

∑

i∈{PV,W,BM}

pi
(
tp
)

(14)  

where PT and PP are the decision variables corresponding to the installed 
power of turbines and pumps, respectively and ηT and ηP their respective 
performances.  

e) In storage resources, it is necessary to control that the total energy 
stored during the entire simulation period is within the appropriate 
limits. To simplify the problem, the maximum capacity and depth of 
discharge of these systems can be fixed. Otherwise, it will be 
necessary to choose an additional decision variable for these systems. 
The condition that must be met is shown in equation [15]. 

EHmin ≤ −

∫ tp

− ∞
p′

H(t)⋅dt = EHo −

∫ tp

t0
p′

H(t)⋅dt ≤ EHmax (15)  

In equation [15], p′
H(t) is the energy leaving the storage system, where 

each energy flux in equation [14] is divided by its corresponding output, 
EHmin and EHmax are the minimum and maximum limits, respectively, of 
the energy stored in the system and EHo is the energy stored at the initial 
instant of the simulation.  

f) Finally, the import from the network at each moment will be the 
power that is not supplied by any generation system. Therefore, this 
value will be obtained using equation [16]: 

p̂g
(
tp
)
=min

(

pd
(
tp
)
−

∑

i∈{PV,W,BM,H}

pi
(
tp
)
, 0

)

(16)  

2.2. Multi-objective optimization problem 

In order to address the optimization problem, the process com
mences by standardizing the objective function using the equation [17]: 

fn =
(
f1n , f2n

)
=

(
f1

f1max

,
f2

f2max

)

(17) 

Once normalised, the problem consists of minimizing said function 
subject to the restriction of minimum and maximum values of the de
cision variables. This is shown in equation [18]. 

minimise fn

subject to

{
Pimin ≤ Pi ≤ Pimax∀i

Pi ∈ PFi∀i

(18)  

where PFi is the set of feasible discrete values for variable Pi. 
To solve this problem, the proposed optimization method based on a 

MOPSO and a final BAB technique are used. This procedure is necessary 
because it deals with constrained noisy functions and because it has 
discrete decision variables and with lower and upper bounds. The al
gorithm is explained below. 

2.3. Proposed optimization algorithm 

To solve the proposed problem, a set of parameters εj ∈ [0, 1] is 
defined to pose various single objective optimization problems. There
fore, for each parameter εj there is an optimization problem whose so
lution is a point on the Pareto frontier. The objective function of each of 
these problems is obtained by means of equation [19]: 

fj = εj ⋅
f1

f1max

+
(
1 − εj

)
⋅

f2

f2max

, 0≤ εj ≤ 1 (19) 

Each of these optimization problems is solved by minimizing the 
corresponding objective function fj with a PSO algorithm considering 
the following remarks:  

a) For each combination of the variables Pi, the use of each system and 
the total cost of energy must be calculated to obtain the value of the 
objective function. Since it is not possible to obtain this function 
explicitly, the value of this function is calculated after simulating the 
load flow of all the systems during the evaluation period, based on 
the known demand curve and the forecast growth estimate. That is, 
the objective functions are noisy functions, which requires the use of 
multi-objective optimization algorithms such as the proposed 
MOPSO with a search for the feasible optimum through BAB.  

b) The variables Pi are generally discrete, so they have a minimum 
value, a maximum value, and a finite number of feasible interme
diate values. The problem will be solved continuously to prevent 
rounding from affecting particle speed and convergence. After fin
ishing, a BAB technique will be used to find the best feasible solution 
close to the theoretical optimum obtained.  

c) As a consequence of the above, after the last iteration, if a variable 
falls between two possible values, the BAB technique will be applied 
to determine the best feasible solution. That is, if at the end of the 
iterative process a variable Pi obtains a value of Ph and the closest 
possible values for it are Pa and Pb with Pa < Ph < Pb, the value of the 
objective function fj = fa will be calculated considering Pi = Pa and 
the value fj = fb when Pi = Pb and the value that minimizes the 
objective function fj = min(fa, fb) will be chosen. If this happens for 
several variables simultaneously, the value of the objective function 
will be calculated for all the possible combinations and the combi
nation that minimizes it will be chosen, exploring the tree of com
binations and choosing the best ones through BAB. Thus, in a general 
case with nr resources, it would be necessary to simulate up to 2nr 

possible combinations and choose the one that minimizes the 
objective function. Note that in some of these cases it may happen 
that a solution is not viable because it does not satisfy some re
striction, so it would be necessary to modify all the variables one step 
up or down and explore scenarios and discard those that are not 
optimal. As a result of the process, the optimal viable solution closest 
to the theoretical optimum is reached. 

The PSO algorithm is used normally in all other respects, as described 
below. 
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2.3.1. Particle swarm optimization algorithm 
The PSO algorithm consists of an iterative process in which some 

particles take positions that tend to the optimum of the objective func
tion to be minimized. There is an extensive bibliography on this [52], so 
in this section only the stages of the algorithm are summarized. The 
movement of the particles simulates the movement of a swarm. The 
particles are vectors that contain the decision variables of the problem 
and their positions are the values they take at each moment. To do this, 
three steps are followed:  

1. Evaluate the fitness value of each particle at the current position. 
That is, compute the value of the objective function at the current 
position of each particle.  

2. Update the best individual fitness of each particle and the best global 
fitness.  

3. Update each particle’s velocity and its new position for the next 
iteration. 

The initial positions of the particles are taken uniformly distributed 
trying to cover the entire space of feasible values of each decision var
iable. In each iteration, each particle obtains a fitness value (value of the 
objective function) and remembers its best value throughout the algo
rithm. In each iteration, the particle with the best fitness value is also 
updated, comparing it with the best value obtained in the previous it
erations. Typical stopping criteria can be the number of iterations or the 
tolerance [53] (small changes in the best fitness value). 

At each iteration s, the position of each particle k in the population is 
updated using equation [20]: 

x(s+1)
k = x(s)k + v(s+1)

k (20)  

where x is the position and v is the velocity of the particle. The velocity 
must be calculated using equation [21]: 

v(s+1)
k = α ⋅ v(s)k + c1 ⋅ r1 ⋅

(
x̂(s)

k − x(s)k

)
+ c2 ⋅ r2⋅

(
g(s) − x(s)k

)
(21)  

where i is the particle index, α is the inertial coefficient, c1 and c2 are 
acceleration coefficients (0 ≤ c1, c2 ≤ 2), r1 and r2 are random values 
(0 ≤ r1, r2 ≤ 1) regenerated for every velocity update, v(s)k is the parti

cle’s velocity at iteration s, x(s)
k is the particle’s position at iteration s, x̂(s)

k 

is the particle’s individual best solution as of iteration s and g(s) is the 
swarm’s best solution as of time iteration s. 

If at the end of the method, for a certain particle there is a position 
x(s)

k that is not feasible for any of the decision variables, then the branch- 
and-bound technique is applied in an additional iteration. 

2.3.2. Pareto frontier analysis 
As a result of each optimization problem for each parameter εj, an 

optimum of the function fj is obtained as a composition of the values of 
the functions f1j and f2j by virtue of equation [19]. The points (f1j , f2j )

form the so-called Pareto frontier. It is necessary to consider all the 
possible solutions in this frontier and select some of them based on the 
appropriate value of εj and other conditions on the decision variables in 
the set of solutions. 

All the exposed optimization methodology is summarized in the 
flowchart shown in Fig. 2, where Δε can be 0.1, for instance. 

3. Case study description 

The situation of the town selected for this case study, Aras de los 
Olmos, has a series of characteristics that are especially important to 
illustrate the method. Firstly, the town is located at the far end of a long 
20 kV line, which causes many power supply problems and poor reli
ability. Secondly, in the town there are flat and elevated areas where 

Fig. 2. Flow chart to optimize plant sizing.  
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wind and PV plants can be located. Thirdly, there are a large number of 
farms from which a large amount of biomass can be obtained at a low 
cost for a biogas plant. Finally, there is a river next to which there is a 
steep area with a drop of more than 100 m, ideal for installing a hy
droelectric plant. 

In this municipality, the demand and available resources have been 
studied, locating the plants in the best places, taking into account as
pects such as performance, cost and regulation. All permits have been 
requested to install a biogas plant (up to 250 kW), PV plant (up to 1 
MW), wind power plant (due to regulation, it is limited to 200 kW) and 
hydraulic plant (pumps and turbines up to 250 kW, trying to install more 
power from pumps than from turbines). 

4. Results and discussion 

The proposed methodology has been applied to the case study 
described in Section 3. The method has been programmed in MATLAB 
and the PSO algorithm configuration is shown in Table 1. A thorough 
parameter sweep analysis has been conducted to identify configurations 
with optimal performance characteristics for this study. 

In each iteration of every particle, the program solves the simulated 
demand and generation of all resources based on the measured curves 
and analysis data of each resource for a full year. This simulation is 
extrapolated to a horizon (project lifetime) of 20 years. 

To obtain the annualized costs, an interest rate of 0.6 % has been 
considered. Regarding the costs considered for each resource, manu
facturers and maintenance companies have been consulted and the 
values in Table 2 have been proposed. 

The expenses detailed in Table 2 encompass several key components. 
These comprise the labour costs essential for the operation of in
stallations such as biomass and hydroelectric facilities, as well as the 
expenditures associated with the collection and transportation of 
biomass, and all financial outlays related to hydraulic tanks. Further
more, the expenses linked to the acquisition of essential land and per
mits have been factored into the cost calculations. Concerning the 
pricing of energy imported from the network, it exhibits a variable na
ture, predicated on actual data obtained from a specific year, for which 
detailed information pertaining to the hourly demand curve is accessible 
[54]. The mean cost stands at 0.15€/kWh, and an annual increment of 
0.5 % has been considered. These cost assessments have been derived 
subsequent to the development of a series of preliminary projects 
focused on renewable installations within the municipality under study. 
It is noteworthy that for prospective research endeavours, additional 
resources and databases, such as [55], are available for reference. 

In the hydroelectric plant, an efficiency of 80 % has been considered 
for both pumps and turbines [56]. These values apply to incoming and 
outgoing energy, including load losses or alternator efficiency. 

When normalizing the objective function, the values f1max =

600,000€/year and f2max = 4, 000,000kWh/year have been considered 
to keep both functions below 1 in any normal scenario. 

The algorithm has been used to solve the 11 optimization problems 
that result from applying the coefficients shown in equation [24]. The 
number of simulated scenarios in this case study is deemed sufficient; 
however, in cases where the Pareto front is not distinctly delineated, it 
may be necessary to compute a higher number of scenarios, thereby 
reducing the discretization steps. 

Table 1 
Particle swarm optimization algorithm options.  

Option Description Value 

SwarmSize Number of particles 50 
FunctionTolerance The algorithm stops if after 20 stall 

iterations a relative change in best 
fitness is less than this amount 

10− 6 

MaxIterations Maximum number of iterations 1000 
InertiaRange Lower and upper bound of the 

adaptive inertia 
0.1–0.9 

SelfAdjustmentWeight Weighting of each particle’s best 
position when adjusting velocity, c1 

2 

SocialAdjustmentWeight Weighting of the neighbourhood’s 
best position when adjusting velocity, 
c2 

2 

MinNeighborsFraction Minimum adaptive neighbourhood 
size (%) 

25 % 

nvars Number of decision variables in this 
study: PPV, PP, PT, PBM, PW in kW. 
They correspond to the installed 
power of PV, pumps, turbines, 
biomass and wind. 

5 

VariableBounds Minimum and Maximum values for 
each decision variable (kW) 

PPV : 0 ÷ 1000 
PP : 0 ÷ 250 
PT : 0 ÷ 250 
PBM : 0 ÷ 250 
PW : 0 ÷ 200 

StorageLimit Maximum value of energy stored in 
the hydroelectric power plant (kWh) 

EHmax = 7500  

Table 2 
Costs considered for each resource.  

Resource Installation costs 
(€/kW) 

Operation and maintenance 
costs (€/kW/year) 

Production costs 
(€/kWh) 

PV 1500 18 – 
Pumps 3500 34 – 
Turbines 3500 34 – 
Biomass 7550 63 0.06 
Wind 4200 44 –  

Fig. 3. Evolution of the particle swarm optimization algorithm for the case ε8 
= 0.7. 
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εj =
j − 1
10

,∀jϵ[1, 11] (22) 

In each problem, the 50 particles start out randomly covering the 
entire space and try to minimize the function f. As an example of the 
evolution of the PSO algorithm, the case ε8 = 0.7 is shown in Fig. 3. 

In Fig. 3, five graphs are shown with the positions of all the particles 
throughout the 52 iterations. The lower plot shows the value of the 
objective function for each particle in red and the best fitness of each 
iteration is highlighted in green. The iterations are represented on the 
horizontal axis. As can be seen, fitness tends to a minimum value and 
each variable tends to a value. 

The final solution of the optimal mix reached for each problem is 
shown in Fig. 4. 

The solution to the problem corresponding to ε1 = 0 has been dis
carded, since f = f2 for that case. This produces undesirable results, 
since the f2 function is nullified in all scenarios where the decision 
variables take on large values. Therefore, the method cannot converge to 
an optimal solution. The value of functions f , f1 and f2 after solving each 
problem can be seen in Fig. 5. As is logical, when f2 increases, f1 de
creases, since the objective is to minimize the value of f and at higher 
installed powers, less energy imported from the network. 

As a result of all the iterations of all the problems, the different so
lutions of the objective function f and of each of its components f1 and f2. 
are obtained. A solution is called non-dominated or Pareto optimal, if 
none of the objective functions can be improved in value without 
degrading some of the other objective values. The set of non-dominated 

Fig. 4. Final solution of the optimal mix reached for each ε.  

Fig. 5. Value of functions f, f1 and f2 after solving each ε.  
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solutions forms the so-called Pareto frontier for this problem. Fig. 6 
shows the values of both objective functions for all the particles, high
lighting in red the non-dominated solutions, belonging to the frontier. 

Table 3 shows the combination of input variables that is considered 
optimal for each problem and the results of the objective functions. 

The results from the Pareto frontier represent optimal outcomes 
based on the initial premises. Upon closer examination of each case, a 
specific set of decision variable values must be discussed to yield the 
feasible optimum through the Branch and Bound (BAB) method. This 
discussion underscores the importance of not only identifying Pareto- 
optimal solutions but also understanding the practical implications of 
these solutions in terms of real-world implementation. Through this 
thorough analysis, the study aims to provide a comprehensive view of 
the potential energy mix configurations that align with the project’s 
objectives and constraints. Additionally, it is crucial to note that when 
selecting the optimal combination along the Pareto frontier, there are 
additional constraints to consider, particularly system stability. There
fore, each case must be analyzed with particular care. In the context of 
this case study, the sources contributing to system inertia are biogas, 
hydroelectric, and wind power. Hence, maintaining a minimum power 
of 50 kW from these sources is of great interest to ensure proper fre
quency control. This requirement highlights the importance of a 
meticulous examination of the energy mix to guarantee both economic 
efficiency and system reliability. 

In a first consideration, both objective functions are important. To 
choose the optimal solution, a value of εj ∈ [0.2,0.8] should be selected, 
while extreme solutions should be avoided. Specifically, the solution for 
ε1 = 0 does not make sense and has already been discarded from this 

table, since the algorithm cannot converge to a single optimum if only 
minimizing the function f2 is considered as the objective. 

Table 4 shows the percentage increase of each objective function 
when the value of εj is increased. Analyzing the evolution of the function 
f1 and especially f2, it is observed that the increase that occurs when 
going from ε8 = 0.7 to ε9 = 0.8 is very high. In the case of the function 
f1, there is a reduction of 7.66 %, the largest of all. On the other hand, 
the function f2 presents an increase of 200.49 %, much greater than the 
immediately previous values. Analogous instances arise when the solu
tion is characterized by ε6 = 0.5, suggesting that such solutions should 
be avoided, as this analysis pertains to a minimization problem. This is 
the first indication that the optimal solution to adopt may be the one 
corresponding to ε8 = 0.7 or close to it. 

Another argument for opting for this solution is that the mix is 
logical. This is so because it presents balanced values for pumps and 
turbines (somewhat higher for the pumps, as would be expected in a real 
mini-hydroelectric plant), a significant but reasonable percentage of PV 
and a balanced share of all resources. 

Another equally acceptable solution would be the one corresponding 
to ε7 = 0.6, but logically, this has a higher annualized cost, which is not 
very attractive for investors, so that when faced with two consecutive 
optimal solutions, the second can be considered more attractive. Both 
options are very similar, since it is a similar mix with little difference in 
the power of the different resources. 

To complete the proposed methodology, the BAB methodology must 

Fig. 6. Pareto frontier. All particles in each iteration (blue) and final conver
gence (red). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 

Table 3 
Results of the objective functions for each ε.  

εj PPV PP PT PBM PW f1 f2 fn 

0.1 636.08 124.74 250.00 250.00 200.00 0.6476 0.0004 0.0651 
0.2 794.33 208.12 245.10 249.93 50.56 0.6342 0.0028 0.1291 
0.3 631.49 122.96 203.20 248.45 199.82 0.6309 0.0039 0.1920 
0.4 679.56 159.70 215.46 226.12 198.22 0.6272 0.0059 0.2544 
0.5 815.86 239.93 203.35 156.95 193.95 0.5997 0.0295 0.3146 
0.6 784.49 224.04 182.08 159.60 199.76 0.5937 0.0360 0.3706 
0.7 713.60 190.21 129.19 156.45 200.00 0.5758 0.0676 0.4234 
0.8 627.38 90.00 45.28 92.35 200.00 0.5318 0.2033 0.4661 
0.9 532.22 0.00 0.00 0.00 200.00 0.5001 0.3780 0.4879 
1.0 652.89 0.00 0.00 0.00 0.00 0.4937 0.4529 0.4937  

Table 4 
Percentage increase of each objective function when the value of εj is increased.  

εj f1 Δf1 f2 Δf2 

0.2 0.6342 − 2.06 % 0.0028 704.19 % 
0.3 0.6309 − 0.53 % 0.0039 38.11 % 
0.4 0.6272 − 0.59 % 0.0059 52.63 % 
0.5 0.5997 − 4.38 % 0.0295 396.05 % 
0.6 0.5937 − 1.01 % 0.0360 22.24 % 
0.7 0.5758 − 3.00 % 0.0676 87.83 % 
0.8 0.5318 − 7.66 % 0.2033 200.49 %  

Table 5 
Viable powers of each source.  

Resource Feasible powers (kW) 

PPV 700-750-800 
PP 180-200-240 
PT 120-160-180-200 
PBM 120-160-200 
PW 100–200  

Table 6 
Optimal feasible solutions.  

εj PPV PP PT PBM PW f1 f2 fn 

0.6 750 240 180 160 200 0.5883 0.0393 0.4236 
0.7 750 180 160 160 200 0.5800 0.0619 0.4246  
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be applied to select the best feasible solution. In the range of preselected 
solutions, the viable powers of each source shown in Table 5 are 
considered, corresponding to real commercial equipment considered for 
the initial feasibility study. In this context, it is essential to note that 
considering system stability is crucial when evaluating the selected so
lutions. In the case study, photovoltaic generation does not contribute to 
system inertia, which makes solutions with small values in the other 
sources (e.g., less than 50 kW for any of them) potentially challenging 
for system stability. Therefore, it becomes of utmost importance to ac
count for the Lowest Permissible Sustained Power, a factor that was 
initially left unrestricted in this study but is revisited after convergence 
in the discussion of optimal choices. This reconsideration is pivotal for 
initiating the Branch and Bound (BAB) process and ultimately selecting 
the definitive energy matrix. 

All combinations have been simulated for both selected scenarios. 
The results of these simulations have produced the two optimal feasible 
solutions shown in Table 6. 

Finally, it has been decided to opt for the solution corresponding to 
ε8 = 0.7, particularized for the discrete values of the variables shown in 
Table 6, due to the similarity between both and to having a lower value 
in the annualized costs. In this case, the outcome with ε7 = 0.6, while 
closely resembling that with ε8 = 0.7, exhibits a slight imbalance. 
Notably, there is a significant disparity between the power generated by 
turbines and that by pumps, with the latter being approximately 33 % 
higher. Taking into consideration these factors, the practical design 
phase ultimately favoured the implementation of the solution corre
sponding to ε8 = 0.7. As a result of the application of this method, 
theoretical configurations that minimize costs and imported grid energy 
have been obtained, providing tangible benefits for energy sustainabil
ity. After making the final decision of the desired scenario to be 
installed, the detailed design projects for the facilities have been 
developed, of which some particular aspects are described in the 
following section. 

5. Technical implementation of the optimal solution 

This section presents the specific physical design details of each 
system selected for the optimal solution of the renewable generation 
system in the proposed MG, aiming to demonstrate its feasibility. Fig. 7 
illustrates the main characteristics of the renewable power plants. 

5.1. Photovoltaic power plant 

The construction features of the 750 kW PV power plant include 
2400 polycrystalline PV solar panels, with each panel having a power of 
315 kWp. The dimensions of each panel are 1956 x 992 × 40 mm. The 
panels are grouped in strings of 20 elements in series. 

There are 6 inverters of 126 kWp (with a capacity to support up to 
160 kWp and provide a 100 kW output) connected to the transformer. 
Each inverter is connected to a total of 20 strings (i.e., 400 panels). Since 
off-grid supply is planned, the inverters have an adjustable power factor 
and can supply up to 60 kvar. 

The structure allows for the panels to be positioned at an angle of 35◦

or with solar tracking on one axis. The total surface area required in both 
cases is 10,000 m2. 

Finally, the energy will be evacuated in high voltage (HV) via a 
newly constructed power line from the transformer room to the 
connection with the existing 20 kV line. 

5.2. hydroelectric power plant 

The hydroelectric power plant will serve both as an energy storage 
and generation element. It has a turbinating capacity of 160 kW and a 
pumping capacity of 180 kW. The main elements are detailed below:  

- An upper tank of asphalt concrete, raft type, with a surface area of 
8100 m2 (90 x 90 × 3 m) to store 24,300 m3 of water, allowing for 48 
turbinating hours. 

Fig. 7. Autonomous energy system of Aras de los Olmos.  
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- The lower tank is made of reinforced concrete with dimensions of 50 
x 20 × 4 m, to store 4000 m3 of water and allowing for 9.6 turbi
nating hours.  

- Two Pelton type turbines with 80 kW hydraulic power, operating at a 
height of 180 m and a flow rate of 58 l/s.  

- Two synchronous generators capable of operating both in parallel 
with the grid and in island mode, allowing control of delivered 
reactive power, voltage regulation, and synchronization.  

- Three 60 kW vertical centrifugal pumps, operating at a height of 186 
m and a flow rate of 100 m3/h. The estimated pumping capacity is 
13 h due to the size of the lower reservoir. 

The electrical power will be evacuated in HV from the 250 kVA 
transformer station. 

5.3. Biomass power plant 

The construction features of the 160 kW biomass power plant are 
specified as follows:  

- A storage area with a volume of 93 m3, equivalent to a three-day 
storage capacity. It will be a reinforced concrete construction with 
a diameter of 6.3 m and a depth of 3 m.  

- The digester is designed with a volume of 925.15 m3 and a daily 
biogas production of 977 m3. It is made of reinforced concrete, with 

Fig. 8. Management of all the resources. a) Winter day; b) Summer day.  

Fig. 9. Annual energy supply Breakdown by resource.  
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dimensions of 13 m in diameter and 7 m in height. The digester is 
covered by a double-layer elastic membrane with a capacity of 500 
m3, allowing the biogas to be stored for at least 12 h. It is worth 
mentioning that this digester will utilize strategically bioaugmented 
microbial strains resulting from the EU-funded project: Natural and 
Synthetic Microbial Communities for Sustainable Production of 
Optimized Biogas (Ref.: 101000470) [57].  

- The biogas generated is treated in a desulphurizer and subsequently 
processed in a dryer, which has a maximum processing flow rate of 
80 m3/h for energy generation in the combustion engine. The 160 
kW internal combustion engine will drive the synchronous generator 
with one pair of poles at 3000 rpm for the generation of electrical 
energy, which will be evacuated in low voltage (LV) to the trans
former room. 

5.4. Wind power plant 

The wind power plant consists of a single 200 kW wind turbine, 
model Garbi 200/28 of Electriawind, with a tower height of 40 m and a 
rotor diameter of 28 m. It is a three-bladed, synchronous generator 
machine with a gearbox, pitch angle control system, and variable speed 
operation. The installation occupies an area of 6900 m2, considering the 
foundations (100 m2) and the roads (6800 m2). 

The energy will be evacuated in HV from the transformer located 
next to the wind turbine, through a newly constructed 1700 m under
ground line connecting the wind turbine to the existing 20 kV line. 

5.5. Technical viability 

Based on the analysis of hourly demand curves for a full year and the 
statistical values of generation for each resource, the real operation of 
the system at each moment has been simulated to minimize the objective 
functions. Fig. 8 illustrates both a typical summer day (a) and a winter 
day (b), where the management of all the resources can be observed, 
taking advantage of solar surpluses for pumping, the use of biogas 
during hours with lower solar PV production, and maintaining very low 
import and export values. 

As a final contribution, Fig. 9 presents the fraction of energy 
demanded by the municipality that would be supplied by each energy 
resource over the course of a typical year. 

5.6. Economic viability 

With the pre-design of the power plants described above, a simula
tion of a 20-year scenario of facility usage has been developed. This 
scenario considers the described plant sizes and includes all associated 
costs, such as project and installation costs, maintenance, raw materials, 
personnel, bank loans, fees, and taxes. The study also considers a loss of 
efficiency of 0.5 % due to aging and a stable energy demand, considering 
it is a rural area. The income from the sale of energy is considered for 
each year, with conservative prices of €50/MWh for exchanges with the 
bulk system (import or export) and €0.15/kWh for the sale of energy to 
the town’s household users. Additionally, financing in the form of a non- 
refundable grant covering 50 % of the total installation cost has been 
considered. The results of this scenario are shown in Table 7. 

6. Conclusions 

This study introduces an innovative method for optimizing microgrid 
(MG) generation system sizing, particularly in scenarios characterized 
by unreliable connections to the electrical grid. The proposed approach 
involves a comprehensive analysis, encompassing demand assessments, 
evaluation of generation potential, resource selection, and strategic 
placement. A multi-objective particle swarm optimization (MOPSO) 
algorithm is employed, with a focus on minimizing both annualized 
costs and imported energy from the grid. 

The key significance of this work lies in its innovative approach. The 
practical application of the proposed method to a real-world microgrid 
in a Spanish town has yielded valuable insights and outcomes. Notably, 
the study has successfully identified an optimal generation mix for the 
microgrid, a crucial step towards enhancing energy self-sufficiency. The 
selection of this feasible solution has been thoughtfully considered, 
taking into account key criteria and inherent limitations. Moreover, the 
approach achieves a harmonious representation of available resources. 

This case study stands as a pioneering exemplar within Spain and 
holds the potential to establish the town as the country’s first to 
disconnect from the national grid. As these installations near completion 
and transition into operational status, further investigations into 
disconnection prerequisites, such as battery storage and system inertia, 
will be essential. The utilization of actual production data from the fa
cility will play a pivotal role in these assessments. 

Moreover, it’s particularly interesting to note that the presented 
method holds broader applicability. While its successful implementation 
in other locations hinges on the meticulous analysis of energy demand 
and renewable generation potential in the initial steps, this approach 
offers a versatile framework. Additionally, the flexibility of exploring 
alternative optimization algorithms beyond MOPSO further underscores 
its adaptability, as each algorithm brings its unique advantages to the 
table. This versatility opens up opportunities for a wide range of appli
cations and underscores the enduring value of this research. 
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Table 7 
Economic viability of the optimal solution.  

Costs Incomes Economic parameters 

Facilities 4,589,000 € Sale of energy to household users 247,500 
€/year 

IRR for 20 years 8.33% 

Purchase of energy in the first three years (during the 
execution of the installations) 

82,500 
€/year 

Sale of surpluses to the system (average 
value during the useful life) 

43,400 
€/year 

Accumulated cash balance 
for 20 years 

1,686,738 
€  
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PSO, a swarm intelligence-based evolutionary algorithm as a decision-making 
strategy: a review. Symmetry 2022;14(3):455. https://doi.org/10.3390/ 
sym14030455. 

[43] Tomazella CP, Nagano MS. A comprehensive review of Branch-and-Bound 
algorithms: guidelines and directions for further research on the flowshop 
scheduling problem. Expert Syst Appl 2020;158:113556. https://doi.org/10.1016/ 
j.eswa.2020.113556. 

[44] Fan Y, Wang P, Heidari AA, Chen H, Mafarja M. Random reselection particle 
swarm optimization for optimal design of solar photovoltaic modules. Energy 
2022;239:121865. https://doi.org/10.1016/j.energy.2021.121865. 

C. Roldán-Blay et al.                                                                                                                                                                                                                           

https://doi.org/10.1109/ACCESS.2019.2900356
https://doi.org/10.1109/ACCESS.2019.2900356
https://doi.org/10.1016/j.renene.2023.01.055
https://doi.org/10.1016/j.renene.2023.01.055
https://doi.org/10.1016/j.enpol.2019.111051
https://doi.org/10.1016/j.energy.2020.119598
https://doi.org/10.1016/j.energy.2020.119598
https://doi.org/10.1016/j.energy.2022.126275
https://doi.org/10.1016/j.apenergy.2020.115526
https://doi.org/10.1016/j.energy.2022.125653
https://doi.org/10.1016/j.energy.2022.125653
https://doi.org/10.1016/j.esr.2019.01.006
https://doi.org/10.1109/PDGC.2018.8745849
https://doi.org/10.1016/j.renene.2021.11.024
https://doi.org/10.1016/j.renene.2021.11.024
https://doi.org/10.1007/978-3-319-98687-6_1
https://doi.org/10.1007/978-3-319-98687-6_1
https://doi.org/10.1109/ICRERA52334.2021.9598699
https://doi.org/10.1109/ICRERA52334.2021.9598699
https://doi.org/10.1109/ICRERA55966.2022.9922738
https://doi.org/10.1016/j.energy.2023.128976
https://doi.org/10.1016/j.energy.2023.128976
https://doi.org/10.1109/TSG.2021.3132640
https://doi.org/10.1109/TSG.2021.3132640
https://doi.org/10.1016/j.epsr.2020.106371
https://doi.org/10.1016/j.energy.2023.128430
https://doi.org/10.1016/j.energy.2023.128430
https://doi.org/10.1109/ICAACCA51523.2021.9465336
https://doi.org/10.1109/ICAACCA51523.2021.9465336
https://doi.org/10.1016/j.renene.2020.05.095
https://doi.org/10.1016/j.energy.2021.119898
https://doi.org/10.1016/j.scs.2020.102391
https://doi.org/10.1016/j.scs.2020.102391
https://doi.org/10.1016/j.rser.2021.111915
https://doi.org/10.1016/j.ijepes.2020.106686
https://doi.org/10.1109/JPROC.2017.2679040
https://doi.org/10.1007/s40565-017-0339-3
https://doi.org/10.1007/s40565-017-0339-3
https://doi.org/10.35833/MPCE.2018.000590
https://doi.org/10.35833/MPCE.2018.000590
https://doi.org/10.1016/j.apenergy.2017.05.076
https://doi.org/10.1016/j.apenergy.2017.05.076
https://doi.org/10.1016/j.rser.2022.112674
https://doi.org/10.1016/j.energy.2023.128908
https://doi.org/10.1016/j.energy.2023.128908
https://doi.org/10.1016/j.rser.2016.12.059
https://doi.org/10.1016/j.rser.2016.12.059
https://doi.org/10.1109/ACCESS.2022.3197194
https://doi.org/10.1109/ACCESS.2022.3197194
https://doi.org/10.1016/j.energy.2023.128823
https://doi.org/10.1016/j.energy.2023.128823
https://doi.org/10.1016/j.energy.2023.128182
https://doi.org/10.1016/j.energy.2023.128182
https://doi.org/10.1016/j.energy.2022.125981
https://doi.org/10.1016/j.energy.2018.07.109
https://doi.org/10.1016/j.energy.2023.128464
https://doi.org/10.3390/su11247111
https://doi.org/10.1016/j.ref.2021.07.007
https://doi.org/10.1016/j.ref.2021.07.007
https://doi.org/10.1016/j.renene.2014.05.006
https://doi.org/10.1016/j.energy.2020.118472
https://doi.org/10.1016/j.energy.2020.118472
https://doi.org/10.1016/j.energy.2021.122487
https://doi.org/10.1016/j.energy.2021.122487
https://doi.org/10.3390/sym14030455
https://doi.org/10.3390/sym14030455
https://doi.org/10.1016/j.eswa.2020.113556
https://doi.org/10.1016/j.eswa.2020.113556
https://doi.org/10.1016/j.energy.2021.121865


Energy 284 (2023) 129318

14

[45] Selvakumar K, Anuradha R, Arunkumar AP. Techno-economic assessment of a 
hybrid microgrid using PSO. Mater Today Proc 2022;66:1131–9. https://doi.org/ 
10.1016/j.matpr.2022.04.919. 

[46] Copp DA, Nguyen TA, Byrne RH, Chalamala BR. Optimal sizing of distributed 
energy resources for planning 100% renewable electric power systems. Energy 
2022;239:122436. https://doi.org/10.1016/j.energy.2021.122436. 

[47] Chaduvula H, Das D. Analysis of microgrid configuration with optimal power 
injection from grid using point estimate method embedded fuzzy-particle swarm 
optimization. Energy 2023:128909. https://doi.org/10.1016/j. 
energy.2023.128909. 

[48] Fioriti D, Poli D, Duenas-Martinez P, Micangeli A. Multiple design options for 
sizing off-grid microgrids: a novel single-objective approach to support multi- 
criteria decision making. Sustain Energy, Grids and Netw 2022;30:100644. https:// 
doi.org/10.1016/j.segan.2022.100644. 

[49] Raya-Armenta JM, Bazmohammadi N, Avina-Cervantes JG, Sáez D, Vasquez JC, 
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